
RTSA File Format
Features and Purpose
The RTSA file format is used to store files generated by the RTSA Suite. The file format is binary a chunk

based, similar to e.g. the PNG file format.

The file format offers the following distinguishing features:

• Binary, compact and optionally compressed storage of measurement data

• Meta data storage (location, time, format etc.)

• Multi streams

• Interleaving of streams

• Sequential stream read and write

• Random access of complete files

• Preview storage of power spectra and power histogram

• Extension of existing streams

File Structure

Chunk Structure
The file is composed of individual and optionally recursive chunks. Each chunk starts with a chunk

header:

struct DSPStreamFileChunk

{

 quint32 mChunkID, mChunkSize, mChunkFlags;

 quint16 mVersion, mHeaderSize;

};

The chunkID is a 32 bit code comprised of four ASCII letters. The chunk size (which includes the header)

can be used to skip unknown or ignored chunks and progress quickly through the file. A chunk is

comprised of a header and actual data, which may be either another series of chunks or binary data,

based on the type of chunk.

The version field indicates incompatible of versions of chunks. If the header size in a chunk is larger than

the known size of the reading application, the superfluous data may be safely skipped – if it is smaller,

the additional fields can be safely assumed to have a default value (usually zero). Incompatible layout of

a chunk is indicated by a different version number. With this scheme, it is painless to add new fields to

chunks without creating incompatible versions.

General Data Types
Data is stored in little endian format.

Times are always stored in 64bit floating point doubles, relative to the start of the Unix epoch (January

first 1970, 12am) or the start of the stream.

All offsets in the file are 64 unsigned integers.

Strings are stored as UTF8 and padded with zeros.

Generic File Layout
An RTSA file starts with a DSFH (File Head) chunk and ends with a DSFT (File Tail) chunk. Extending an

existing file will result in multiple DSFH/DSFT pairs. Chunks in the file can be read forward using the

chunk size or with random access using offsets stored in other chunks. All offsets are 64bit, relative to

the file start and are backwards. There are no forward references, thus one can easily stream an RTSA

file.

Basic file structure could be:

DSFH File Header

 STRM Stream Head

 ANTA Antenna

 SSTR Sub Stream

 SAMP Samples

 SAMP Samples

 SAMP Sample

 STRT Stream Tail

DSFT File Tail

Other references are based on 64 bit IDs, eg. Stream ID, Sub Stream ID or Antanna IDs. All objects

bearing an ID are placed in the file before they are used. They are also part of backward linked chains for

retrieval during random access.

Chunks

File Head DSFH
The DSFH chunk starts a new independent segment in an RTSA file. All IDs are considered invalid a the

start of a new file header chunk.

struct DSPStreamFileChunkHead : public DSPStreamFileChunk

{

 double mCreationTime;

};

mCreationTime File creation time relative to the epoch

File Tail DSFT
The DSFT terminates a file segment. This is usually the second chunk visited during random access or the

last chunk during streaming.

struct DSPStreamFileChunkTail : public DSPStreamFileChunk

{

 double mCompletionTime;

 qint64 mStreamOffset;

 quint32 mNumStreams;

};

mCompletionTime File completion time relative to the epoch

mStreamOffset Offset of the tail of the last stream in the file

mNumStreams Number of streams in the file

Stream Head STRM
The stream head chunk indicates the start of a new stream in the file.

struct DSPStreamFileChunkStreamHead : public DSPStreamFileChunk

{

 quint64 mStreamID;

 double mStartTime;

 qint64 mStreamOffset;

};

mStreamID Unique 64bit ID for this stream

mStartTime Start time of this stream relative to the epoch

mStreamOffset Offset of the tail of the previous stream in the file

Stream Tail STRT
The stream tail chunk ends a stream. It includes offsets to the start of the stream and the other stream

meta data elements such as sub streams and antennas.

struct DSPStreamFileChunkStreamTail : public DSPStreamFileChunk

{

 qint64 mStreamOffset, mSubStreamOffset, mPreviewOffset;

 quint64 mNumSamples, mPayloadSize;

 quint32 mPreviewLevels, mNumPreviews, mNumPreviewSegments;

 double mEndTime;

 qint64 mAntennaOffset;

 qint64 mMetaDataOffset;

};

mStreamOffset Offset of the stream head chunk

mSubStreamOffset Offset of the last sub stream chunk

mPreviewOffset Offset of the last preview chunk

mNumSamples Number of samples in this stream

mPayloadSize Total payload size in bytes for this stream

mPreviewLevels Number of preview hierarchy levels

mNumPreviews Total number of previews

mNumPreviewSegments Total number of preview segments

mEndTime End time of this stream relative to the stream
start time (aka stream duration)

mAntennaOffset Offset of the last antenna chunk

mMetaDataOffset Offset of the last meta data type chunk

Sub Stream SSTR
A sub stream chunk contains the common meta data for a series of samples, such as frequency bounds,

rates, types, orientations etc. A stream may contain any number of sub streams, due to e.g. antenna

movement or multi segment antennas.

struct DSPStreamFileChunkSubStream : DSPStreamFileChunk

{

 quint64 mStreamID;

 quint32 mSubStreamID;

 qint64 mSubStreamOffset

 double mFrequencyStart;

 double mFrequencyStep;

 double mFrequencySpan;

 double mValueMinimum;

 double mValueMaximum;

 double mDirection;

 quint32 mAntennaIndex;

 quint32 mNumCategories;

 char mName[128];

 quint64 mAntennaID;

 quint64 mMetaDataID;

};

mStreamID The ID of the parent stream

mSubStreamID The stream unique ID of this sub stream

mSubStreamOffset Offset of the previous sub stream of this stream

mFrequencyStart Start of the frequency range

mFrequencyStep Sample rate or bin step

mFrequencySpan Size of frequency range

mValueMinimum Lowest value

mValueMaximum Highest value

mDirection Simple directional indicator

mAntennaIndex Index of multi segment antenna

mNumCategories Number of categories, if this is a sub stream with
name indexed samples

mName Name of this sub stream

mAntennaID The ID of the antenna used to create this sub
stream

mMetaDataID Meta data type ID, if this is a structured data sub
stream

The payload of a sub stream chunk contains the sub stream category chunks.

Sub Stream Category SSCA
A single category in a category sub stream. A category is a named scalar measurement, e.g. a channel

power or a detection probability.

struct DSPStreamFileChunkSubStreamCategory : public DSPStreamFileChunk

{

 char mName[128];

 quint32 mFlags;

 quint8 mRed, mGreen, mBlue, mAlpha;

 double mStartFrequency, mEndFrequency;

};

const quint32 DSSCF_FREQUENCY_VALID = 0x00000001U;

const quint32 DSSCF_COLOR_VALID = 0x00000002U;

mName Name of the category

mFlags Category flags DSSFC_*

mRed Red color value

mGreen Green color value

mBlue Blue color value

mAlpha Alpha color value

mStartFrequency Start frequency

mEndFrequency End frequency

Antenna ANTA
Antenna chunks combine information of the physical and logical properties of the antenna used as well

as geo information, such as location and direction.

struct DSPStreamFileChunkAntenna : public DSPStreamFileChunk

{

 quint64 mAntennaID;

 qint64 mAntennaOffset;

 char mName[128];

 double mLatitude, mLongitude;

 quint32 mFlags;

 quint32 mNumSegments;

 float mTransform[4][4];

 char mAntennaUUID[16];

};

static const quint32 DSPAF_LOCATION_VALID = 0x00000001U;

static const quint32 DSPAF_TRANSFORM_VALID = 0x00000002U;

static const quint32 DSPAF_DIRECTION_VALID = 0x00000004U;

static const quint32 DSPAF_ROTATION = 0x00000008U;

mAntennaID Unique ID of the antenna

mAntennaOffset Offset of previous antenna chunk in the stream

mName Name of the antenna

mLatitude Latitude of base antenna location

mLongitude Longitude of base antenna location

mFlags Antenna flags DSPAF_*

mNumSegments Number of antenna segments

mTransform Antenna transformation (e.g. rotation)

mAntennaUUID Global unique ID of the antenna

The 64 bit antenna ID is used to indicate one antenna chunk, whereas the antenna UUID indicates the

physical antenna. Thus moving an antenna would change the antenna ID but not the UUID.

The payload of an antenna chunk contains the antenna segment chunks.

Antenna Segment ANTS
A multi segment antenna contains a series of antenna segment chunks in its payload section.

struct DSPStreamFileChunkAntennaSegment : public DSPStreamFileChunk

{

 char mName[128];

 float mOrientation[4];

 quint32 mID;

};

mName Name of the segment

mOrientation Orientation of the segment in the antenna
coordinate system

mID ID of the segment

Meta Data Type MDTT
Structured data is stored in the file using a binary compression mode based on a meta data type. These

types are stored themselves as binary compressed data in the payload section of meta data type chunks.

struct DSPStreamFileChunkMetaDataType : public DSPStreamFileChunk

{

 quint64 mMetaDataID;

 qint64 mMetaDataOffset;

};

mMetaDataID Unique ID of this meta data type

mMetaDataOffset Offset of previous meta data chunk

The structured data and its meta data type system is explained in its own chapter.

Preview SPRV
A preview chunk contains one histogram and several preview spectra, as well as offsets into the file for

fast seeking. They are organized in a tree, where the tree height is determined by the number of

previews in the file.

struct DSPStreamFileChunkStreamPreview : public DSPStreamFileChunk

{

 static const quint32 HistogramWidth = 48;

 static const quint32 HistogramHeight = 32;

 static const quint32 WaterfallWidth = 128;

 static const quint32 SegmentsShift = 4;

 static const quint32 Segments = 16;

 static const quint32 Samples = 4096;

 quint8 mPreviewLevel, mPreviewCount;

 qint64 mPreviewOffsets[Segments];

 double mPreviewTimes[Segments];

 quint64 mPreviewSamples[Segments];

};

mPreviewLevel Level of this preview chunk in the hierarchy.
Leave chunks of the tree have level zero

mPreviewCount Number of preview elements in this chunk

mPreviewOffsets Offsets of child preview chunks or the sample
chunks for leave preview chunks

mPreviewTimes Start times of the child preview chunks relative to
the stream start time

mPreviewSamples Start sample index numbers of the child preview
chunks

The payload of the preview chunk may contain the preview information in unitless eight bit values.

struct DSPStreamFileChunkStreamPreviewData

{

 quint8 mHistogram[HistogramHeight][HistogramWidth];

 quint8 mWaterfall[Segments][WaterfallWidth];

};

Samples SAMP
Actual measurement data is stored in sample chunks.

struct DSPStreamFileChunkSamples : public DSPStreamFileChunk

{

 quint64 mStreamID;

 quint32 mSubStreamID;

 DPSStreamSampleType mSampleType : 8;

 DSPStreamSampleUnit mSampleUnit : 8;

 DSPStreamPayloadType mPayloadType : 8;

 qint32 mCompression : 8;

 double mPacketStartTime, mPacketEndTime;

 quint32 mPacketFlags;

 quint32 mSampleSize, mSampleDepth, mNumSamples;

};

mStreamID ID of the parent stream

mSubStreamID ID of the sub stream for this data

mSampleType Datatype of the individual data elements

mSampleUnit Unit used for the samples

mPayloadType General payload type

mCompression Compression or zero for lossless

mPacketStartTime Start time of this chunk relative to stream start

mPacketEndTime End time of this chunk relative to stream start

mPacketFlags Packet flags DSPPF_*

mSampleSize Size of an individual sample

mSampleDepth Depth of a sample

mNumSamples Number of samples in the packet

enum DPSStreamSampleType

{

 DSST_U8,

 DSST_U16,

 DSST_S16,

 DSST_U32,

 DSST_S32,

 DSST_F32,

 DSST_U8N,

 DSST_U16N,

 DSST_S16N,

 DSST_U32N,

 DSST_S32N,

 DSST_F32N

};

The sample type describes a single data element with its size (8, 16 or 32) its signed-ness (U or S) and

whether it is integer or float (U/S or F). The extension N denotes packet storage, whereas all others are

stored on 16 byte boundaries.

enum DSPStreamSampleUnit

{

 DSSU_GENERIC,

 DSSU_DBM,

 DSSU_PERCENTAGE,

 DSSU_DBM_HZ,

 DSSU_DBM_M2,

 DSSU_INDEX,

 DSSU_PHASE,

 DSSU_SIGNED_1,

 DSSU_UNSIGNED_1

};

The sample unit describes the physical unit and value range for an individual data element.

GENERIC Generic floating point value

DBM Decibel milliwatt

PERCENTAGE Percentage 0..1

DBM_HZ Decibel milliwatt per Hz

DBM_M2 Decibel milliwatt per square meter

INDEX Integer index

PHASE Phase from -π to +π

SIGNED_1 Signed floating point in the range – 1 to 1

UNSIGNED_1 Unsigned floating point in the range 0 to 1

The payload type specifies the high level sample data structure.

enum DSPStreamPayloadType

{

 DSPT_GENERIC,

 DSPT_AUDIO,

 DSPT_IQ,

 DSPT_SPECRTA,

 DSPT_DETECTION,

 DSPT_HISTOGRAM,

 DSPT_ENERGY,

 DSPT_VECTOR3,

 DSPT_STRUCTURED,

 DSPT_IQ_SLICE,

 DSPT_IMAGE

};

GENERIC Generic numeric data

AUDIO Audio samples

IQ IQ samples, two values per sample

SPECTRA Power spectra

DETECTION Detection probability

HISTOGRAM Histogram

ENERGY Energy

VECTOR3 3D Vectors

STRUCTURED Structured data using meta data types

IQ_SLICE Slices of IQ samples

IMAGE Grey scale image

Structured Data using Meta Data Type

Type of Types

The structured data types use a hierarchical type system with a small set of base types and three type

constructors: fixed sized vectors, variable sized arrays and objects.

enum Type

 {

 MT_NONE,

 MT_BOOL,

 MT_INTEGER,

 MT_FLOAT,

 MT_STRING,

 MT_VECTOR,

 MT_ARRAY,

 MT_OBJECT

 };

static const quint32 DSSMTF_8BIT = 0x00000001;

static const quint32 DSSMTF_16BIT = 0x00000002;

static const quint32 DSSMTF_64BIT = 0x00000004;

static const quint32 DSSMTF_SIGNED = 0x00000010;

static const quint32 DSSMEF_RECURSIVE = 0x00000020;

A type object itself has five fields:

id U64 ID of this type

type U8 Type enum for basic type or type constructor

flags U32 Flags for this type DSMTF_*

count U32 Number of elements or bitmask

elements Array Member elements

The elements array is used with objects and has the following type:

name String Name of the element

flags U32 Flags for the element DSMEF_*

type Object The type of the element

This type of types has the type ID zero and forms the root of the type system.

A C type definition would look like this:

struct MetaType

{

 quint64 mID;
 Type mType;
 quint32 mFlags;
 quint32 mCount;
 struct Element
 {

 QString mName;
 quint32 mFlags;
 MetaType mType;
 } mElements[];
};

Storage Format
A simple numeric type is stored in little endian format, using the number of bytes denoted by its type

flag (8, 16, 32 or 64).

The string type is stored using a 32bit number for the number of characters followed by a sequence of

UTF8 characters.

Vectors are stored as a packed sequence of elements.

Arrays are stored with a 32bit size, followed by a sequence of elements.

Objects are stored with a 32bit mask, indicating non zero elements (starting with bit zero) followed by a

sequence of non zero elements.

Examples
The examples assume type IDs starting at one (1)

Array of 16bit signed Integers

An array of simple types, stores the type of the base element in a single element child.

MetaType ArrayOfInt = {1, MT_ARRAY, 0, 0, {{””, 0, {2, MT_INTEGER,

DSSMTF_16BIT | DSSMTF_SIGNED, 0, {}} }}};

The resulting binary sequence would thus be:

01 00 00 00 00 00 00 00 : mID 1

06 : mType MT_ARRAY

00 00 00 00 : mFlags 0

00 00 00 00 : mCount 0

00 00 00 01 : mElements size 1

 00 00 00 00 : mName “”

 00 00 00 00 : mFlags

 00 00 00 1F : mType mask 11111

 02 00 00 00 00 00 00 00 : mID 2

 02 : mType MT_INTEGER

 12 00 00 00 : mFlags 16Bit and signed

 00 00 00 00 : mCount 0

 00 00 00 00 : mElements size 0

Object of a 3D vector

Objects can store up to 32 named data elements. The child elements are stored in an array of objects,
including the types. Types that have been defined before are stored with their ID only. This example
uses a vector of 32bit floats with the elements x, y and z.

MetaType Vector3D = {1, MT_OBJECT, 0, 0,

{{“x”, 0, {2, MT_FLOAT, 0, 0, {}}
{{“y”, 0, {2, MT_FLOAT, 0, 0, {}}
{{“z”, 0, {2, MT_FLOAT, 0, 0, {}} }};

The resulting binary sequence would thus be:

01 00 00 00 00 00 00 00 : mID 1

07 : mType MT_OBJECT

00 00 00 00 : mFlags 0

00 00 00 00 : mCount 0

00 00 00 03 : mElements size 3

 01 00 00 00 78 : mName “x”

 00 00 00 00 : mFlags

 00 00 00 1F : mType mask 11111

 02 00 00 00 00 00 00 00 : mID 2

 03 : mType MT_FLOAT

 12 00 00 00 : mFlags 16Bit and signed

 00 00 00 00 : mCount 0

 00 00 00 00 : mElements size 0

 01 00 00 00 79 : mName “y”

 00 00 00 00 : mFlags

 00 00 00 01 : mType mask 00001

 02 00 00 00 00 00 00 00 : mID 2

 01 00 00 00 7A : mName “z”

 00 00 00 00 : mFlags

 00 00 00 01 : mType mask 00001

 02 00 00 00 00 00 00 00 : mID 2

Seeking and Preview Data
All preview chunks of a stream form a tree of stream segments. Each node has up to 16 references to

nodes in the next lower level. The lowest level references individual sample chunks.

Seeking by time or sample number is thus a three step process:

1. Read the stream tail and extract the preview root offset and the stream end time

2. Traverse the tree using the preview times, samples and offset fields of the nodes, starting from

the root until you reach a leaf node

3. Linearly read and scan the sample chunks using the packet start and end time

The preview data in each preview chunk consists of a series of up to 16 power spectra and one

histogram. The cover range of each spectra is given by the preview times, the cover range of the

histogram is the full range of the preview chunk.

The preview data is comprised of eight bit unsigned integer values spanning the complete range from 0

to 255. It has no unit or scale and is intended for visual presentation of the stream content without the

need to actually read the file. The recursive structure of the preview allows a quick presentation of the

full stream or sections even for very large files.

Compression of Spectrum Data
Uncompressed spectra are stored as 32bit floating point numbers. The common unit is dBm (decibel

milliwatt). Spectrum data can be compressed using a compression factor indicator from 1 to 31. The

algorithm is based on wavelets, quantization and variable symbol lengths.

Wavelet Conversion
The first compression step is a trivial wavelet transform. It is performed on up to 16 spectra in one

block.

It alternates between a compression step in time direction and a step in the frequency direction, until

both are not divisible by two anymore. Only the low pass coefficients are recursively filtered.

The wavelet transform replaces the even indexed numbers with the sum of and the odd indexed

numbers with the difference between the two samples. The results are multiplied by the square root of

one half in each step to keep the numbers in range.

Quantization
All coefficients are then uniformly quantized using a quantization factor derived from the compression

factor.

 float quant = 0.1f * (1 << (chunk.mCompression - 1));

Bit Packing
Bit packing uses a variant of the Rice Code to store the integer portion of the quantized coefficients. The

number of leading zero bits indicates the size of the code, each leading zero bit increases the size of the

residual by three bits. The remaining bits provide the residual values. Codes are therefore multiples of

four bits, which simplifies parsing.

Code Value Code Value

1000 +0 1001 -0

1010 +1 1011 -1

1100 +2 1101 -2

1110 +3 1111 -3

0100 0000 +4 0100 0001 -4

0100 0010 +5 0100 0011 -5

0100 0100 +6 0100 0101 -6

0111 1110 +35 0111 1111 -35

0010 0000 0000 +36 0010 0000 0001 -36

0010 0000 0010 +37 0010 0000 0011 -37

0011 1111 1110 +291 0011 1111 1111 -291

0001 0000 0000 0000 +292 0001 0000 0000 0001 -292

0001 0000 0000 0010 +293 0001 0000 0000 0011 -293

0001 1111 1111 1110 +2343 0001 1111 1111 1111 -2343

Decompression
Decompression is performed in the inverse order of compression:

1. Unpacking the required number of coefficients from the bitstream

2. Dequantization

3. Inverse wavelet transform

Sample Code
This section provides some sample code for the decompression step.

The WaveTransformStep performs one decompression step in the frequency (x/colums) or time

dimension (y/rows). The coefficients are assumed to be compact. The sx and sy parameters specify the

step size, the dxy parameter the offset between the two sections (half the step size in the appropriate

direction).

void WaveTransformStep(quint32 sx, quint32 sy, quint32 dxy)

{

 for (quint32 y = 0; y < NumRows; y += sy)

 {

 for (quint32 x = 0; x < NumColumns; x += sx)

 {

 float s = WaveBuffer[x + y * NumColumns];

 float t = WaveBuffer[x + y * NumColumns + dxy];

 WaveBuffer[x + y * NumColumns] = SQRTHALF * (s + t);

 WaveBuffer[x + y * NumColumns + dxy] = SQRTHALF * (s - t);

 }

 }

}

WaveDecompress first determines the starting step size, then iterates alternatively in time and

frequency domain.

void WaveDecompress(void)

{

 quint32 step = 1;

 while ((NumRows & (2 * step - 1)) == 0) step *= 2;

 while ((NumColumns & (2 * step - 1)) == 0) step *= 2;

 while (step > 1)

 {

 step >>= 1;

 if ((NumColumns & (2 * step - 1)) == 0)

 {

 WaveTransformStep (2 * step, step, step);

 }

 if ((NumRows & (2 * step - 1)) == 0)

 {

 WaveTransformStep (step, 2 * step, step * NumColumns);

 }

 }

}

The transform step is the same in compression and decompression mode, only the order and step sizes

are different.

Sample Files Analyzed
File Header

DSFH
44 53 46 48 mChunkID
18 00 00 00 mChunkSize
00 00 00 00 mChunkFlags;
01 00 mVersion
18 00 mHeaderSize
E0 96 2A ED 3A 1C 15 43 mCreationTime

Stream Header

STRM
53 54 52 4D mChunkID
28 00 00 00 mChunkSize
00 00 00 00 mChunkFlags
01 00 mVersion
28 00 mHeaderSize
07 00 00 00 00 00 00 00 mStreamID
29 5C FF EC BE 22 D6 41 mStartTime
00 00 00 00 00 00 00 00 mStreamOffset - no prior stream packet, thus terminating

offset 0

Antenna

ANTA
41 4E 54 41 mChunkID
F8 00 00 00 mChunkSize
00 00 00 00 mChunkFlags

01 00 mVersion
F8 00 mHeaderSize
....

Sub Stream

SSTR
53 53 54 52 mChunkID
E8 00 00 00 mChunkSize
00 00 00 00 mChunkFlags
01 00 mVersion
E8 00 mHeaderSize
07 00 00 00 00 00 00 00 mStreamID
03 00 00 00 mSubStreamID
00 00 00 00 00 00 00 00 mSubStreamOffset - no prior substream packet
...

Sample packet

SAMP
53 41 4D 50 mChunkID
40 70 00 00 mChunkSize
00 00 00 00 mChunkFlags
01 00 mVersion
40 00 mHeaderSize
07 00 00 00 00 00 00 00 mStreamID
03 00 00 00 mSubStreamID
05 mSampleType - DSST_F32
01 mSampleUnit - DSSU_DBU
03 mPayloadType - DSPT_SPECRTA
00 mCompression - uncompressed
D9 39 6A D2 6D DD 50 40 mPacketStartTime
1D E7 BD Fa 7F DD 50 40 mPacketEndTime
00 00 00 00 mPacketFlags;
80 03 00 00 mSampleSize - 896 bins
01 00 00 00 mSampleDepth
08 00 00 00 mNumSamples - 8 spectra in the packet
91 C8 9A C2 - first data sample
...

Stream Tail

STRT
53 54 52 54 mChunkID
58 00 00 00 mChunkSize
00 00 00 00 mChunkFlags
01 00 mVersion
58 00 mHeaderSize
18 00 00 00 00 00 00 00 mStreamOffset - offset of the STRM chunk in the file
38 01 00 00 00 00 00 00 mSubStreamOffset - offset of the last SSTR chunk in the

stream
30 D8 0B 01 00 00 00 00 mPreviewOffset
10 13 00 00 00 00 00 00 mNumSamples
00 E0 0A 01 00 00 00 00 mPayloadSize
01 00 00 00 mPreviewLevels - small file, thus single level preview tree
06 00 00 00 mNumPreviews - 6 preview chunks in the bottom level
58 00 00 00 mNumPreviewSegments - 88 preview segments in the bottom

level
xx xx xx xx - padding
78 F8 D9 3D 29 08 51 40 mEndTime
40 00 00 00 00 00 00 00 mAntennaOffset - offset of the last ANTA chunk in the

stream

File Tail

DSFT
44 53 46 54 mChunkID
28 00 00 00 mChunkSize
00 00 00 00 mChunkFlags
01 00 mVersion
28 00 mHeaderSize

A0 FE 52 ED 3A 1C 15 43 mCompletionTime
01 00 00 00 mNumStreams
xx xx xx xx - padding

Command Line File Utility
The RTSAFileTool command line utility can be used to inspect, repair or export rtsa files. It is part of the

installation and can be found in the applications install folder.

Inspecting Files
The command line for inspecting files is:

RSTAFileTool info

[-start=<starttime>] [-end=<endtime>]

[-histo] [-preview[=<lines>]]

file.rtsa

start HH:mm:ss.zzz Optional start time in the file

end HH:mm:ss.zzz Optional end time in the file

histo Show histogram for selected range

preview U32 Show preview lines of spectras

file.rtsa Filename of source file

Repairing Files
The command line for repairing files is:

RSTAFileTool repair

[-compress=<factor>]

file.rtsa target.rtsa

compress U32 Compression factor to be used in target file

file.rtsa Filename of source file

target.rtsa Filename of target file

Exporting Data from Files
The command line for exporting data from files is:

RSTAFileTool export

[-start=<starttime>] [-end=<endtime>]

[-compress=<factor>]

[-format=<csv|rtsa|xml|excel|dat|xml|json|wv|asc|mat|iq>]

file.rtsa [target.csv]

start HH:mm:ss.zzz Optional start time in the file

end HH:mm:ss.zzz Optional end time in the file

compress U32 Compression factor for target files

format Output format

file.rtsa Filename of source file

target.csv Filename of target file, or stdout if no filename is
provided

